Reopening the Inscription
Rodrigo Arteaga, from the Inscription to the Phenomenon

Yara Guasque
Independent Artist and Researcher
Florianópolis, Brasil
yaraguasque@gmail.com

Abstract
Maps are a key element in the practices of Rodrigo Arteaga and of Fitz Roy, despite the different backgrounds, and the interval of centuries. Fitz Roy is the commander of Beagle and Adventure who explored the Chilean landscape cut by the oceanographic topography, channels, rivers and capes from Patagonia to the Antarctic Continent in the nineteenth century. Rodrigo Arteaga is the young Chilean artist, in exhibition since 2009, whose work deals with expanded cartographies like hydrographic basin, astronomy and others. In Libros Abiertos a series from 2012, Arteaga juxtaposes pages taken from old volumes of anatomy, botany, astrology, maps of the watershed. The capillarity of rivers and tributaries are displayed next to scientific images of arterial anatomy and membrane fragments suggesting what, in a way, resembles calligraphies to be interpreted. We know that for the observed phenomena to be transcribed into a flat topography, various tools and much knowledge are needed. And yet the transcription should be intelligible in the Knowledge Network. This is exactly what Fitz Roy wanted from the phenomenon transformed into a readable abstract inscription. Rodrigo Arteaga predicts that the inscription is reversible and can be reopened into the observed phenomenon again.

Keywords
Maps; abstract inscription; phenomenon; Knowledge Network.

The narrative of Fitz Roy's travel attempts to account for a variety of natural phenomena that influenced the navigability in the southern hemisphere. His purpose, in addition to following instructions bound by the economic and political interests of the English Crown when exploring the passage from the Atlantic to the Pacific, was to improve the navigation charts by providing updated information. Winds and sea currents, water and weather temperatures, earthquakes, climate changes are described just as well as the recognition of flora and fauna and of the society under development in such an inhospitable land: the shock of the settlers with the natives, the adaptation of foreigners and the survival of the natives and their social system, used to few resources and hard weather, facing the presence of missionaries and explorers who docked on their land. The details of his daily records on the tides and winds were useful to reconfigure the old Spanish maps of the coast and rivers. Furthermore, as a good surveyor and meteorologist observing on the spot, Fitz Roy was able to realize how these data influenced the navigation. [1]

Travelers and shipwrecked, helped each other sharing information and supplements as they could. They formed a network, which can be exemplified in the fact that they used one of the small islands as a place to exchange their correspondence, in the Post-Office Bay, so named because it was where sailors sought for received letters and other letters for which the addressee was at a location on their route (ROY, 2013, p. 420). The Beagle and Adventure ships under Fitz Roy’s command could be considered mobile laboratories. The surveys made in those days are comparable to projects of environmental census nowadays, with their measurements, charts and graphs, with data collected in different languages and formats. The Beagle became famous in history for having for five years a renowned researcher on board, Charles Darwin who was part of the group of 74 members, most of them sailors. According to Fitz Roy's remarks the young biologist could contribute more than the surgeon in charge of the health of seafarers, who in his spare time would be also responsible for taking notes on the specimens collected during the trip. Charles Darwin, during the voyage, kept constant correspondence with his former teacher John Stevens Henslow. Despite the distance and the difficulty of communication, the collaboration between the two narrowed. Henslow in England was Darwin's advisor, guiding Darwin, through letters, as to how he could continue his research. It was he who received the boxes with the assessment of the surveyed specimens from the southern hemisphere. The task of scientists is only effective through networks, technoscientific networks, if we are to use Latour’s term. And we see Charles Darwin
Knowledge Networks

Knowledge Networks are nourished with the movement between the periphery and the center. Taking and bringing specimens within scientific expeditions has mainly two different purposes: when moved to the peripheries for cultivation aiming the survival of sailors, as the case of shipwrecks from exploratory trips, or when they are brought to the Centers for study means, drawn or as dried specimens, exsiccates, and inserted in the collections and herbariums spread in Europe, such as Kew Royal Botanic Gardens in London, to where several examples of South American flora were brought. [2]

The parameters of Natural Sciences were present in the practices of Fitz Roy and of the naturalist Fritz Müller while they were exploring the southern hemisphere in the nineteenth century, *i.e.* the in loco observation phenomenon; the inventory in the open; and the conceptual instrumental able to interpret the data. In the case of Charles Darwin, who followed Fitz Roy to the southern hemisphere at a very young age, we can only speak of representing phenomena out of his reach when he was already ill and settled in his native country, continuing with his search through collaborators.

The network of Charles Darwin and Fritz Müller materialized through letters. Fritz Müller was the naturalist researching the Atlantic Forest under demand. Charles Darwin now repeating the role of his former teacher John Stevens Henslow. was the older scientist giving the guidelines for the research to be undertaken in the forests of the southern hemisphere, which became foreign publications from the Calculation Centers, legitimized by the circle of renowned scientists. "Many instructions are to be given to those sent around the world on how to stuff animals, how to dry up plants, how to label all specimens, how to name them, how to pin down butterflies, how to paint drawings of the animals and trees no one can yet bring back and domesticate ". But it is important to set the same coefficients, the same parameters, in order to have instrumental knowledge. [4]

The technosciences are carried out through complex networks, not homogeneous, either knowledge or financing networks, and through the use of specific instruments such as "templates, graphics totals, tables, lists" allowing us to link many disciplines. The purpose of technosciences is action and control from a distance. "Going from 'science' to 'technology' is not going from a paper world to a messy, greasy, concrete world. It is going from paperwork to still more paperwork, from one centre of calculation to another which gathers and handles more calculations of still more heterogeneous origins". [4]

Not only the climate conditions, the study of hydrography, geology are implied in the map, but also the engineering of boats and navigation instruments, political and economic trends. We could consider that every work that collects environmental data and places it "into the paper world," tries to encompass a fleeting and transient reality, - for the monitoring of the environment would have for purpose the capacity to predict changes and disasters, to facilitate access to unknown regions and, in short, one day being able to reconstruct the phenomenal world from the information gathered and preserved in the form of abstract inscription. However neither the water temperature, nor the height and frequency of the waves collected, for example, as measured in 2005 by the buoy Station 31201 in Florianopolis coastline, in a survey

Figure 1. Tillandsia tenuifolia var. surinamensis, one of the specimens collected in Brazil and sent to Europe by Fritz Müller, that today is part of the collection of Kew’s Herbarium, Royal Botanic Gardens as a dried plant. [3]
undertaken by the Universities UFSC and USDC, was able to predict such a rare hurricane in southern Brazil. And neither the prevailing currents nor the winds at the Strait of Magalhães and Beagle Channel, as reported by Fitz Roy, reconstitute the phenomenon of the sea itself, even though they assist new navigators entering these waters.

Abstract inscriptions and living organism overlap one another and take turns in the work of Rodrigo Arteaga. Such detail can be seen in Convergence, from 2013, in which the artist, after researching in the microbiology laboratory of San Joaquin Medical Center, grew colonies of filamentous fungus on glass slides to populate his maps thus giving the heraldic inscriptions an organic quality. Another installation displayed by the artist in October 2014 in the Gallery Afa Arte Contemporaneo, in Santiago, Chile, shows a plant that survives on a thin layer of soil on an old volume of a botanical treatise. [5] This encourages us to travel the technoscience networks described by Bruno Latour in Science in Action (1987/2011). These are the technoscience networks for which the trip captained by Fitz Roy bringing the young scientist Charles Darwin to the southern hemisphere could come as an example. But Arteaga recreates, in an exemplary way and with great sensitivity and precision, the link connecting the inscription in the book of botany to the plant in the world, and from this back to the graphic inscription on the botanic book. The plant springs from the book, so to speak, and builds this bridge, as an example of connection between the living species and the abstract inscription, such as the scientific illustration and the data in the book of botany. [6] Were the works by Arteaga and other artists who make environmental census, aestheticizing or fictionalizing science?

Reversely, searching for an inscription in the correspondence between the naturalists on expedition and the scientists in the study centers, or in their published data, can also be an investigation of artistic value. [7] Reopening the "inscriptions" gives rise to the collaboration network that allowed the storage of collected information, and brings to light various instruments, such as maps, tables, several studies even of economic and political decisions involved in the expeditions. [8]
References

Author Biography