
Esolangs as Experiential Art

Daniel Temkin

New York, NY

daniel@danieltemkin.com

Abstract

Esolangs (for “esoteric programming languages”) are a class of

languages made by programmers at play, not intended for

practical use. Ben Olmstead (creator of the Malbolge language)

describes them as “pushing the boundaries of programming,

but not in useful directions.” [1] This paper looks at how these

strange languages function as experiential art pieces, with

similarities to Oulipean systems and Fluxus event scores.

Keywords

Esolangs, Esoteric Programming Languages, Language,

Concept Art, Fluxus, Ouipo, Code Art

 Introduction

Esolangs have been described as jokes, parodies,
impractical research, scenarios of the improbable, or

what can only be defined as programming languages by
butchering the very definition of a programming
language. [2]

Figure 1. Hello World in INTERCAL (author unknown)

There are three strategies esolangs commonly take to
express an idea. The first, and perhaps more obvious
given that most code is a form of text, is through their

vocabulary. The other two we can think of as logic-
oriented esolangs and concept languages.

Languages like LOLCODE and INTERCAL both make
strange use of keywords, although with very different
approaches. INTERCAL, created in 1972 (and generally
considered the first esolang), functions as a parody of

languages of the time. It asks the programmer to beg and
plead with the machine, personifying the compiler as a
capricious autocrat who allows programs to compile or
not based on how much groveling is done. Its language

is cryptic and confusing, a puzzle for the programmer.
[3]

Figure 2. Hello World in LOLCODE (Adam Lindsay)

LOLCODE (Adam Lindsay, 2007) personifies the "lolcats"
meme. Starting every program with "HAI" and ending with
"KTHXBYE", the script in between is full of the familiar

mix of baby talk and internet slang of lolcats. [4] These
languages ridicule the authority of the machine through the
actual text of the programs created within them. However,
the code is still intuitive: using “visible” for “print” and
“kthxbye” for “exit.” The lolcats concept is added to the code
without obscuring the code’s function.

Programming languages are formal systems; they are self-
contained and closed, apart from references to computer
operations. They are made up of commands which must
compile down to machine code, a purely denotative space
with no place for nuance: when we communicate with the

machine, we can’t insinuate or gesture; any ambiguity in the
language is wiped out. Both these languages use elements of
human language and expression to add back some of that
gesture and nuance at the top level, even if it is stripped away

in its conversion to machine instructions. Where commands
in INTERCAL are confusing, they are only confusing to us,
not the machine; likewise, at the machine level, LOLCODE
commands are the same as in many other imperative,
procedural languages.

Befunge and brainfuck

Although nearly all esolangs rely on vocabulary as part of

their method of expression, many esolangs are less
vocabulary-oriented than those two examples. In 1993,
Wouter van Oortmerssen designed FALSE, a language for
the Amiga. The objective of FALSE was to support the

smallest possible compiler (written in assembler, it was 1024
bytes). To reach this objective, Wouter used single letters for
commands. [5]

This obfuscated syntax was then picked up by two other
languages the same year, both also written for the Amiga and
using single-letter commands: brainfuck (usually spelled
lower-case) and Befunge. Where FALSE was essentially a

tiny version of the Forth language, brainfuck and Befunge
began to explore the programming language space as
systems of thought. These languages rely on logic more than
vocabulary.

Figure 3. Hello World in Befunge (author unknown)

Brainfuck (Urban Müller, 1993) is Turing Complete,
meaning that it can theoretically be used to write programs
to do anything that can be written in, say, C++, only it is even
tinier than FALSE, consisting of eight punctuation marks

alone (resulting in a 240 byte compiler). In brainfuck, we
can't write code that looks like "let x = 36" because all of
those characters, from the word "let", to the spaces between
words, are ignored. X means nothing to the language, and

neither does 3 or 6. Instead, we move back and forth through
memory using the angle brackets (< and >) until we get to a
place we might think of as x, followed by 36 plus signs, each
incrementing that memory cell from zero.

A more succinct alternative is to loop six times through the
operation of adding six, like so:

++++++[>++++++<-]>

Alternately, one could count down from zero, as in 8-bit
brainfuck, subtracting one from zero gives you 255. Or one

could use nested loops to reach any number which, modulus

256, leaves 36. There are a great many ways of producing
that single number, and choosing one over another becomes
a matter of personal style or a chance to find a clever
solution. [6]

The complexity of brainfuck does not arise artificially; each
brainfuck command maps directly to a command in

assembly code, the substrate of most languages. Rather than
making these commands more human-friendly (like how,
say, the C compiler does), it refuses to ease the translation,
both with its odd syntax and its tiny selection of choices,

thereby directly exposing the conflict between human
thinking and computer logic.

Figure 4. Hello World in Piet (James Dessart)

Befunge (Chris Pressey, 1993), similarly, builds on
complexity that arises from a simple idea. It uses 2D code
rather than the ordinary formatted strings of text. Befunge
programs run up and down the page (or screen), crossing

itself in horizontal and vertical lines, like a maze. Because of
its snaking structure, the same command can be read
multiple times in different directs, in completely different
contexts and with different results. Also, it ignores any code
which is not in its execution path, meaning comments and

non-executed code can appear amongst real code, making it
hard to differentiate what is or is not part of the program.

Building on the 2D design of Befunge, Piet (David Morgan-
Marr, 2001) gets rid of characters entirely, using images as
source code. The compiler takes a similarly serpentine path
through the image, only here the change in color from one

group of pixels to the next determine commands. Both

changes in hue and in lightness have meaning; because it’s
delta-based (the change rather than symbol itself is the
signifier), correcting a mistake in the code means rewriting
all the pixels that fall after it. The language was named for

Mondrian, and so much of the source code mimics
Mondrian's aesthetic, although the rules of the language
favor a shattered and sometimes lumpy, pixelated look.

Piet unifies the vocabulary-oriented impulse with logic-
oriented code. Like INTERCAL, Piet creates a space
between the look of the code and its actual function, making
language visible in a way it isn’t in traditional languages

(which opt for clarity of style to emphasize code’s function
over its appearance). Where INTERCAL brings in an
overflow of human expression that ordinarily has little place
in code, Piet encodes it into an entirely different system with

its own signifiers and style, whether it’s used for simple
abstractions or representational images. However, Piet also
has the strange logic borrowed from Befunge; like the logic-
oriented languages, it is experiential in nature, a challenge
for the programmers using it. This impulse to mix systems is

reiterated in other work of David Morgan-Marr’s, such as his
language Chef, which uses (often extremely odd) recipes as
code.

Esolangs as Performance Scores

It is tempting to compare Piet programs with Generative

works, as some have a similar appearance to computer-
generated images. Only here the look of the image is
determined by rules which run on the programmer, not the
machine. Geoff Cox, in his Speaking Code, looked at
running code as performative. He sees it as a special type of

performance, in that the machine always “performs” the
same piece of code the same way: the speaking of the code
and performance of it become flattened. [7] We can contrast
this with work such as the Fluxus event scores, which leave

enormous space for interpretation. Yoko Ono’s Fly Piece
(with the single instruction “Fly”), evokes many different
things, leaving nothing specific for the “performer” of the
score — that performer might be a reader, for whom an

imaginary flight is invoked, or perhaps someone actually
trying to physically interpret it. [8]

Esolangs in the tradition of brainfuck and Befunge however,

re-open this possibility in the score. Because they are open-
ended systems, the writing of programs within the language
becomes the space for this interpretation. They are
experiential — you have to program in a language in order

to understand it, it’s not to be passively received. And even
in brainfuck, code by different programmers may feel very
different. An esolang with no esoprogrammers is a sad thing,
a score with no performer. A language is a prompt.

The esolanger ais523, who co-runs the esolangs.org wiki,

puts it this way: “it’s much more interesting if the point of
view of the language is one that you can think in
independently.” Ais523 singles out LOLCODE as falling
short of this:

I should also mention LOLcode, which has become
pretty relevant as an esolang in the non-esolang

community recently, much to the annoyance of most
actual esolangers. It doesn’t have much intrinsic
interest for most of the reasons people are interested in
esolangs, being mostly a simple imperative language

derivative with the keywords swapped out... However,
it appeals for things like its visual appearance and
general attitude, which although are IMO the least
important aspect of an esolang, are one of the most
immediately noticeable. [9]

To actually code in such a language does not lead to a greater
understanding of its system; we essentially get LOLCODE

by looking at sample code. Richer languages, even
vocabulary-oriented ones, may reveal more interesting ideas
about language and code.

Conceptual Languages

Before a compiler builds a program, it has to parse the code.
Some languages focus on this step. Like unperformable

Fluxus scores, they produce no functional programs at all,
serving only to verify source code, turning a language into a
system of inclusion or exclusion.

The compiler for the language Unnecessary (Keymaker,
2005), when run on any file at all, fails with an error
message. An empty document, an image, a Word document,

each is rejected as not Unnecessary. Only a file which can’t
be found succeeds in compilation—and it succeeds in
creating an empty program, one which simply opens and
closes. A single instruction—NOP (pronounced “no op” for
“no operation”) is the whole of the program. As Keymaker

puts it:

The main idea was that the language could not have

programs, other than the kind that don’t exist. (Can it
have those then if they don’t exist?) Then I noticed that
every valid program (whatever that is) is a/the null-
quine but that was more of a by-product of the main

idea. Fitting nonetheless! [10]

A quine is a program which prints its own source code to the

screen. The null-quine is a program with empty source code
that prints its source (which is nothing) to the screen,
producing no output. Unnecessary is a language with no
keywords, no input, that can only make empty programs.

Is it possible to have esolangs that go even further than

Unneccesary, requiring no machine to run? Chris Pressey,
creator of Befunge and creator of the mailing list where
much of the early esolang discussions took place sees it this
way:

[T]hey’re made up of concepts, and these concepts
would exist even if our computing equipment wasn’t

electronic, or wasn’t digital, or if we didn’t have
computing equipment at all. It’s just that having
computing equipment makes it a lot easier to design and
experience these programming languages. [11]

A language is just a set of rules for symbols and their
behavior. In a sense, they are an even more immaterial form
than software; more like fields of possibility for potential

software. Making this field narrow enough, we can get

languages that have no usability, like Unnecessary. Even

with Turing Complete languages like brainfuck, the practical
use of the language is never the point: they are designed for
the experience of digesting their rules. What makes an
esolang interesting is that it rewards this investment of

thought.

While these three strategies are distinct, they are often mixed
together, as in Piet (and, to some degree, INTERCAL), and

in hundreds of others which have been written since that
time. Each of these three approaches makes language visible
in making programmers type strange things, or think through
irrational logic systems. At their best, they create a space for

human impulses of communication to overflow constraints
of logic.

References

1. Ben Olmstead. Interview. “Interview with Ben
Olmstead,” esoteric.codes (Daniel Temkin), November 3,
2014
2. Chris Pressey, “Esolang”, approx. 2011, accessed Dec
12, 2014
3. Lev Bratishenko, “Technomasochism.” Cabinet
Magazine, issue 36 Winter 2009/2010
4. lolcats.org, accessed Dec 12, 2014

5. Wouter van Oortmerssen, Interview “Interview with
Wouter van Oortmerssen,” esoteric.codes (Daniel Temkin),
upcoming

6. Daniel Temkin, “Brainfuck,” Media-N Journal, Spring

2013

7. Geoff Cox and Alex McLean. Speaking Code: Coding as

Aesthetic and Political Expression (Software Studies)
(Cambridge: MIT Press, 2012), 22.
8. Ken Friendman, Owen Smith, Lauren Sawchyn. Fluxus
Performance Workbook. (Performance Research e-
Publications, 2002), 86.

9. Ais523. Interview. “Interview with ais523,”

esoteric.codes (Daniel Temkin), February 2011
10. Keymaker. Interview. “Interview with Keymaker,”
esoteric.codes (Daniel Temkin), January 2011
11. Chris Pressey. “The Aesthetics of Esolangs,” June 2013
(accessed Dec 12, 2014)
http://catseye.tc/node/The_Aesthetics_of_Esolangs

Bibliography

Geoff Cox and Alex McLean. Speaking Code: Coding as

Aesthetic and Political Expression (Software Studies)

(Cambridge: MIT Press, 2012)

Matthew Fuller, ed. Software Studies; A Lexicon

(Cambridge: MIT Press, 2008)

Chris Pressey. “The Aesthetics of Esolangs,” June 2013

(accessed Dec 12, 2014)
http://catseye.tc/node/The_Aesthetics_of_Esolangs

Michael L. Scott. Programming Language Pragmatics,

Third Edition (Burlington: Morgan Kauffman, 2009)

Daniel Temkin, esoteric.codes (blog), accessed December

18, 2014

The Esoteric File Archive, esolangs.org, accessed
December 12, 2014

Archive of lang@esoteric.sange.fi mailing list, accessed

December 12, 2014

Author Biography

Daniel Temkin (b. 1973) was recently awarded the 2014

Creative Capital / Warhol Foundation Arts Writers Grant for
esoteric.codes, his exploration of programming languages

as art. He has presented at conferences including Media Art
Histories, GLI.TC/H, and hacker conferences such as
NOTACON. His papers have been published in World
Picture Journal, Media-N Journal and others, and have been
taught at schools such as Bard College, Penn State, and

NYU.

His work has been a critic's pick in ArtNews, the New York

Times and the Boston Globe, shown at Mass MoCA,
American History Museum, and galleries across North
America and Europe.

